Glucuronidation of carcinogen metabolites by complementary DNA-expressed uridine 5'-diphosphate glucuronosyltransferases.

نویسندگان

  • P I Mackenzie
  • L Rodbourn
  • T Iyanagi
چکیده

Five UDP glucuronosyltransferases (UGT) were synthesized from complementary DNAs expressed in COS 7 cells and were tested for their capacities to glucuronidate a range of 2-acetylaminofluorene and benzo(a)pyrene-hydroxylated metabolites. Three forms, UGT1*06, UGT2B1, and UGT2B2 [names of UGT forms follow recommended nomenclature (B. B. Burchell et al., DNA Cell Biol., 10: 487-494, 1991)], had similar capacities to glucuronidate the reactive metabolite, N-hydroxy-2-acetylaminofluorene. The less reactive 1-, 3-, 5-, and 8-hydroxy derivatives of this aromatic amine were glucuronidated by UGT1*06 and UGT2B2 to varying degrees, but these were not substrates of UGT2B1. The three isozymes also glucuronidated phenolic metabolites of benzo(a)pyrene. UGT1*06 was more active toward 2- and 5-hydroxybenzo(a)pyrene, whereas UGT2B1 preferentially glucuronidated the 4- and 11-hydroxy derivatives and UGT2B2 preferentially glucuronidated the 1-, 2-, 8-, and 9-hydroxy metabolites. Two other UDP glucuronosyltransferases, UGT2B3 and UGT2B6, that glucuronidated testosterone when expressed in COS 7 cells were both inactive toward all the carcinogen metabolites tested. These results demonstrate that the glucuronidation of metabolites of 2-acetylaminofluorene and benzo(a)pyrene is mediated by at least three UDP glucuronosyltransferases and that each form glucuronidates a unique spectrum of metabolites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucuronidation of amine substrates by purified and expressed UDP-glucuronosyltransferase proteins.

Conjugation of many primary, secondary, and tertiary amine-containing xenobiotics with glucuronic acid can result in the formation of N-glucuronide metabolites. For carcinogenic arylamines and their N-hydroxylated metabolites, N-glucuronidation can result in the formation of either inactive metabolites or labile conjugates, which can be transported to their target tissue (urinary bladder) where...

متن کامل

UGT bioactivation of AαC

Background: 2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogen formed in tobacco smoke, but little is known about its metabolism in humans. Result: UDP-Glucuronosyltransferases catalyze the binding of N-oxidized-AαC to DNA. Conclusion: Glucuronidation, normally a detoxication pathway, contributes to the genotoxicity of AαC. Significance: The exposure to and UGTbioactivation of AαC provides a ...

متن کامل

Involvement of human UGT2B7 and 2B15 in rofecoxib metabolism.

O-Glucuronidation of 5-hydroxyrofecoxib is the major biotransformation pathway of rofecoxib in human, rat, and dog. The glucuronide conjugate is also involved in the reversible metabolism of rofecoxib in rat and human. Atypical bimodal phenomena were observed in their plasma concentration-time curves with a large variability among different human subjects. It is unclear which family members of ...

متن کامل

Glucuronidation as a mechanism of intrinsic drug resistance in human colon cancer: reversal of resistance by food additives.

Colon cancer exhibits inherent insensitivity to chemotherapy by mechanisms that are poorly characterized. We have shown that human colon cancer cells are efficient in drug conjugation catalyzed by UDP-glucuronosyltransferases (UGTs) and now report on the role of glucuronidation in de novo resistance to two topoisomerase I inhibitors. Identification of the UGT responsible for glucuronidation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 53 7  شماره 

صفحات  -

تاریخ انتشار 1993